KURSPLAN
Data Science Programming, 7,5 högskolepoäng
Data Science Programming, 7.5 credits
Kursplan för studenter vår 2025
Kurskod: | TDPS22 |
Fastställd av: | VD 2021-10-28 |
Reviderad av: | Utbildningschef 2023-10-25 |
Gäller fr.o.m.: | 2025-01-01 |
Version: | 4 |
Utbildningsnivå: | Avancerad nivå |
Utbildningsområde: | Tekniska området
|
Ämnesgrupp: | DT1
|
Fördjupning: | A1F
|
Huvudområde: | Datavetenskap |
Lärandemål
After a successful course, the student shall
Kunskap och förståelse
- display knowledge of notebook environments for writing, testing, and debugging code
- demonstrate comprehension of data management and analysis
- demonstrate comprehension of statistics, machine learning and model evaluation
- show familiarity with the range of various data science programming environments
Färdighet och förmåga
- demonstrate the ability of writing well-structured data science programs
- demonstrate skills of producing high quality data visualizations
Värderingsförmåga och förhållningssätt
- demonstrate the ability to select and evaluate programming constructs for solving data science problems
Innehåll
The course is focused on data science programming using modern languages, such as Python and R. The course covers basic language features and concepts, including core libraries for data science programming, such as data management and augmentation, data analysis and visualization, machine learning and model evaluation, alternating theory with practice. After completing the course, the student shall have acquired broad knowledge in the field of data science programming. Specifically, the student should understand and be able to apply all theoretical concepts covered.
The course includes the following elements:
- Syntax and Semantics: basic language features for the programming languages Python and R
- Data Management: importing, exporting, transforming, representing and manipulating data
- Data Augmentation: missing value imputation, discretisation and dimensionality reduction
- Data Analysis and Visualization: libraries for statistical data analysis and visualization
- Machine Learning: libraries for supervised and unsupervised machine learning
- Evaluation and Performance: evaluation metrics and significance testing
- Overview of other (besides Python and R) Data Science Programming environments
Undervisningsformer
The teaching in the course consists of lectures, quizzes, assignments, workshops and tutoring.
Undervisningen bedrivs på engelska.
Förkunskapskrav
Passed courses at least 90 credits within the major subject Computer Engineering, Computer Science, Electrical Engineering (with relevant courses in Computer Engineering), or equivalent, or passed courses at least 150 credits from the programme Computer Science and Engineering, and completed courses Data Science, 7,5 credits and Machine Learning, 7,5 credits, or equivalent. Proof of English proficiency is required.
Examination och betyg
Kursen bedöms med betygen 5, 4, 3 eller Underkänd.
Poängregistrering av examinationen för kursen sker enligt följande system:
Examinationsmoment | Omfattning | Betyg |
---|
Tentamen1 | 4,5 hp | 5/4/3/U |
Inlämningsuppgift | 3 hp | U/G |
1 Bestämmer kursens slutbetyg vilket utfärdas först när samtliga moment godkänts.
Kurslitteratur
The literature list for the course will be provided 8 weeks before the course starts.
Reference texts:
Title: Learning Python, 5th ed, 2013.
Authors: Lutz, M.
Publisher: O’Reilly Media.
ISBN: 978-1449355739
Title: Python Data Science Handbook: Essential Tools for Working with Data, 1st ed, 2016.
Authors: VanderPlas, J.
Publisher: O’Reilly Media.
ISBN: 978-1491912058
Title: Hand-On Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools and Techniques to Build Intelligent Systems, 2nd ed, 2019.
Authors: Géron, A.
Publisher: O’Reilly Media.
ISBN: 978-1492032649
Title: Hands-On Programming with R: Write Your Own Functions and Simulations, 1st ed, 2014.
Authors: Grolemund, G.
Publisher: O'Reilly Media.
ISBN: 978-1449359010
Title: R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 1st ed, 2017.
Authors: Wickham, H. and Grolemund, G.
Publisher: O'Reilly Media
ISBN: 978-1491910399
Title: Machine Learning with R, the Tidyverse, and Mlr, 1st ed, 2020.
Authors: Rhys, H.I.
Publisher: Manning Publications.
ISBN: 978-1617296574